Juliet Gopinath

Profile Picture of Juliet Gopinath
Title
Assistant Professor
Department
Department of Electrical, Computer, and Energy Engineering
Institution
University of Colorado System Office

Education

Not mentioned yet.

Research Interests

Applied Optics   Optics Letters   Optics Express  

  View all research interests

Biography

Not mentioned yet

Homepages

Contact Information

Not mentioned yet.
Research
Not mentioned yet. (?)
List of Publications (29)
In 2013
29

R. D. Niederriter, J. T. Gopinath and M. E. Siemens, "Measurement of the M2 beam propagation factor using a focus-tunable liquid lens," Applied Optics 52, 1591-1598 (2013).

Found on Publication Text
28

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, "Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems," Applied Optics 52, 3172 (2013).

Found on Publication Text
27

A. M. Jones and J. T. Gopinath, "Fast-to-slow axis mode imaging for brightness enhancement of a broad-area laser diode array," Accepted for publication in Optics Express, July 2013 .

Found on Publication Text
In 2012
26

J. T. Gopinath, V. M. Bright, C. C. Cogswell, R. D. Niederriter, A. Watson, R. Zahreddine, and R. H. Cormack, "Simulation of electrowetting lens and prism arrays for wavefront compensation," Applied Optics 51, 6618-6623 (2012).

Found on Publication Text
In 2011
25

P. W. Juodawlkis, J. J. Plant, W. Loh, L. Missaggia, F. O'Donnell, D. C. Oakley, A. Napoleone,, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, "High-Power, Low-Noise 1.5-?m Slab-Coupled Optical Waveguide (SCOW) Emitters: Physics, Devices, and Applications," IEEE J. of Sel. Top. in Quant. Electron. 17, 1698-1714 (2011).

Found on Publication Text
In 2010
24

K-H Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S-W Huang, E Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kaertner, "High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier," Optics Letters 35, 1752-1754 (2010).

Found on Publication Text
In 2008
23

J. T. Gopinath, B. Chann, T.Y. Fan, and Antonio Sanchez, "1450-nm high-brightness wavelength-beam combined diode arrays and stacks," Optics Express 16, 9405-9410 (2008).

Found on Publication Text
22

K.-H. Hong, A. Siddiqui, J. Moses, J. T. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, and F. X. Kaertner, "Generation of 287-W, 5.5-ps pulses at 78-MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system," Optics Letters 33, 2473-2475 (2008).

Found on Publication Text
In 2006
21

J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, "250 mW, 1.5 micron monolithic passively mode-locked slab-coupled optical waveguide laser," Optics Letters 31, 223-225 (2006).

Found on Publication Text
20

J. T. Gopinath, B. Chann, R. K. Huang, C. Harris, J. J. Plant, L. Missaggia, J. P. Donnelly, P. W. Juodawlkis, and D. J. Ripin, "980-nm monolithic passively modelocked diode lasers with 62 pJ of pulse energy," IEEE Photonics Technology Letters 19, 937-939 (2006).

Found on Publication Text
In 2005
19

F. J. Grawert, F. O. Ilday, D. Kielpinski, J. T. Gopinath, L. A. Kolodziejski, G. S. Petrich, E. P. Ippen, and F. X. Kaertner, "Q-switch suppression in an Er-doped waveguide laser with an intracavity loss modulator," Optics Letters 30, 1066-1068 (2005).

Found on Publication Text
18

P. T. Rakich, H. Sotobayashi, J. T. Gopinath, S. G. Johnson, J. W. Sickler, C. W. Wong, J. D. Joannopoulos, and E. P. Ippen, "Nano-scale photonic crystal microcavity characterization with an all-fiber-based 1.2 - 2.0 micron supercontinuum," Optics Express 13, 821-825 (2005).

Found on Publication Text
17

F. J. Grawert, S. Akiyama, J. T. Gopinath, F. O. Ilday, H. M. Shen, J. Liu, K. Wada, L. C. Kimerling, E. P. Ippen, and F. X. Kaertner, "220 fs Er-Yb:glass laser mode-locked by a broadband low-loss Si/Ge saturable absorber," Optics Letters 30, 329-331 (2005).

Found on Publication Text
16

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, "Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression," Journal of Lightwave Technology 23, 3591 - 3596 (2005).

Found on Publication Text
In 2004
15

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and E. P. Ippen, "Large area broadband saturable bragg reflectors using oxidized AlAs." Optics Letters 29, 2551-2553 (2004).

Found on Publication Text
14

H. Sotobayashi, J. T. Gopinath, Y. Takushima, K. Hsu, and E. P. Ippen, "Broadband wavelength tunable, single frequency, and single polarization Bismuth Oxide-based Erbium-doped fiber laser." IEEE Photonics Technology Letters 16, 1628-1630 (2004).

Found on Publication Text
13

R. P. Prasankumar, I. Hartl, J. T. Gopinath, E. P. Ippen, J. G. Fujimoto, P. Mak and M. F. Ruane, "Design and characterization of semiconductor-doped silica film saturable absorbers," Journal of the Optical Society of America B (Optical Physics) 21, 851-857 (2004).

Found on Publication Text
12

H. Sotobayashi, J. T. Gopinath, E. M. Koontz, L. A. Kolodziejski, and E. P. Ippen, "Wavelength tunable, passively mode-locked Bismuth Oxide-based Erbium-doped fiber laser," Optics Communications 237 no. 4-6, 399-403 (2004).

Found on Publication Text
11

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen. "Large area oxidation of AlAs layers for dielectric stacks and thick buried oxides," Journal of Electronic Materials 33, 774-779 (2004).

Found on Publication Text
10

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, "Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 micron," Optics Express 12, 5697-5702 (2004).

Found on Publication Text
9

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, "Third-order nonlinearities in Ge-As-Se-based glasses for telecommunications applications". Journal of Applied Physics 96, 6931-6933 (2004). Also appeared as an Invited Paper in Virtual Journal of Ultrafast Science December 2004.

Found on Publication Text
In 2003
8

H. Sotobayashi, J. T. Gopinath, and E. P. Ippen,"23 cm long Bi2O3-based EDFA for picosecond pulse amplification with 80 nm gain bandwidth," Electronics Letters 39, 1374-1375 (2003).

Found on Publication Text
7

T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski,J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, "Attosecond active synchronization of passively mode-locked lasers using balanced cross-correlation," Optics Letters 28, 947-949 (2003).

Found on Publication Text
6

J. T. Gopinath, H. Sotobayashi, and E. P. Ippen, "Broadband amplification of picosecond pulses in a 23 cm length of Bi2O3-based Erbium-doped fiber," OSA TOPS 92 (Optical Amplifiers and Their Applications), 50-53 (2003).

Found on Publication Text
In 2002
5

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kartner, V. Scheuer, G. Angelow, and T. Tschudi, "Generation of 20-fs pulses by a prismless Cr4+:YAG laser." Optics Letters 27, 61-63 (2002).

Found on Publication Text
4

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C.E. Kerbage, R. S. Windeler, and B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber." Applied Physics Letters 81, 1384-1387 (2002).

Found on Publication Text
3

K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, "Selfstabilized passive, harmonically mode-locked stretched pulse Erbium fiber ring laser." Optics Letters 27, 1758-1760 (2002).

Found on Publication Text
2

D. J. Ripin, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and E. P. Ippen, "Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser." Optics Communications 214, 285-289 (2002).

Found on Publication Text
In 2001
1

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, E. P. Ippen, and J. P. Donnelly, "Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors." Applied Physics Letters 78, 3409-3411 (2001).

Found on Publication Text
Search Profiles
Colleagues
Profile Picture of Marissa Cannady
University of Colorado System Office
Profile Picture of Kurt Maute
University of Colorado System Office
Profile Picture of Martin Dunn
University of Colorado System Office
People Also Viewed
Profile Picture of Scott Armanini
University of Southern California
Profile Picture of Raegan Sauer
University of Central Florida
Profile Picture of Cereyna Bougouneau
Loyola University New Orleans
Recommended Grants
of QFC devices with qubit technologies. References Kuo PS, et al: "Reducing noise in single-photon-level frequency conversion." Optics Letters 38: 1310, 2013 Kuo PS, et al: "Spectral response of an upconversion detector and spectrometer." Optics Express 21 ... 22523, 2013 Kuo...
Exclude from Your Search
for measuring lasing efficiency, spectral content, power, beam quality, ultrashort pulse characterization, and thermo-optic properties of new laser materials. References Berry P, et al: Optical Materials Express 3: 1250, 2013 Jonathan W, et...
Exclude from Your Search
Light-Science and Applications 5: el 60389, 2016. http://dx.doi.org/10.1038/Isa.2016.38 Henn MA, et al: "Optimizing the nanoscale quantitative optical imaging of subfield scattering targets." Optics Letters 41(21): 4959-4962, 2016. http://dx.doi.org/10.1364 ... various qualitative and quantitative...
Exclude from Your Search
Chemistry Letters 5: 2241-2246, 2014 Long DA, et al: "Multiheterodyne spectroscopy with optical frequency combs generated from a continuous wave laser." Optics Letters 39: 2688-2690, 2014 Keywords: Frequency combs; Spectroscopy; Phase stabilization; Chemical...
Exclude from Your Search
Electro-optic frequency combs provide tremendous flexibility and agility while being applicable to a wide range of present problems in physical sensing, quantum science, communications, and dynamic spectroscopy. We have developed novel approaches to comb ... spectroscopy with...
Exclude from Your Search
photonic-crystal cavity and surface-plasmon polariton on nonlinear optics. For ultrafast dynamics of carrier scattering, the research will focus on self-consistenty electron quantum kinetics, lase-pulse propagation, time-resolved optical spectra,...
Exclude from Your Search
and testing of optical foundry processed photonic integrated circuits (PICs). (8) Active linear and nonlinear optical interactions in PICs. **Lab:** https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Optical-Sciences/ **Google Scholar:** [https ... We are investigating the...
Exclude from Your Search
generated from a continuous-wave laser." Optics Letters 39: 2688, 2014 Keywords: Spectroscopy; Laser; Optical frequency comb; Atmospheric chemistry; Remote sensing; Instrument development; Physical chemistry; Optics;...
Exclude from Your Search
and spectrally flat mid-infrared supercontinuum in fluoroindate fibers." Photonics Research 6.6 (2018): 609-613. [2] Rockmore, Robert, et al. "Offset-free mid-infrared frequency comb based on a mode-locked semiconductor laser." Optics Letters 44.7 (2019): 1797-1800 ... [3] Kelley, David B., et al....
Exclude from Your Search
Description** The Energy Efficiency and Renewable Energy (EERE) Science, Technology and Policy (STP) Program serves as a next step in the educational and professional development of scientists and engineers by providing opportunities to participate ... about the EERE Science,...
Exclude from Your Search